

D.3.4 PROOF-OF-CONCEPT CASE TOOL

Gábor Bergmann (BME), Elisa Chiarani (UNITN),Edith Felix (THA),
Benjamin Fontan (THA), Charles Haley (OU), Fabio Massacci
(UNITN), Zoltán Micskei (BME), Bashar Nuseibeh (OU), Federica
Paci (UNITN), Thein Tun (OU) Yijun Yu (OU), Dániel Varró (BME)

Document information

Document Number D.3.4

Document Title Proof-of-Concept CASE Tool

Version 1.0

Status Draft

Work Package WP 3

Deliverable Type Prototype

Contractual Date of Delivery 31 January 2011

Actual Date of Delivery 14 January 2011

Responsible Unit BME

Contributors OU, UNITN, BME, THA

Keyword List requirements evolution, argumentation, evolution
rules,

Dissemination level PU

 D.3.4 Proof-of-Concept CASE Tool| version 1.0 | page 2/22

Document change record

Version Date Status Author (Unit) Description

0.1
15 December

2010
Draft

Federica Paci

(UNITN)

First Draft of Demo

Scenario

0.2
17 December

2010
Draft

Gábor

Bergmann

(BME)

Started the executive

summary.

Elaborated details of each

demo script, except for

the argumentation

Started Technical

Overview

0.3
23 December

2010
Draft

Gábor

Bergmann

(BME)

Completed the executive

summary.

Improved demo scripts,

added argumentation;

attached screenshots

Resolved issues raised

before and during WP3

telephone conference

Added Transformation to

Technical Overview

Added References

0.4
23 December

2010
Draft

Dániel Varró

(BME)

Revised the executive

summary.

0.5
24 December

2010
Draft

Gábor

Bergmann

(BME)

Added explanatory

Figure to Section 2.

0.6
28 December

2010
Draft

Gábor

Bergmann

(BME)

Added Figure 2 to Ex.

Summary.

0.7 12 January 2011 Draft Karmel

Bekoutou

Quality check completed-

minor remarks

 D.3.4 Proof-of-Concept CASE Tool| version 1.0 | page 3/22

(UNITN)

0.9 13 January 2011
Revised

Draft

Gábor

Bergmann

(BME)

Updated Scenario

descriptions to match

reviewer comments.

1.0 14 January 2011
Revised

Draft

Gábor

Bergmann

(BME)

Addressed all minor

remarks

 D.3.4 Proof-of-Concept CASE Tool| version 1.0 | page 4/22

Executive summary

This document is the description of the WP3 CASE tool prototype that was built to
demonstrate the concepts and workflow of SecMER, the SecureChange Methodology
of Evolutionary Requirements.

The demonstrator is an Eclipse-based heterogeneous modelling environment for
evolving requirements models that are formulated in different languages appropriate for
different work phases and domain expertise. It also provides an analysis toolset to
conduct interactive or automated, formal and informal security analysis. Deliverable
D.3.4 consists of two components: a software prototype (called SecMER
Demonstrator) and this document that presents the research results, the demonstrator
architecture and a sample case study.

The main results presented in the demonstrator (and thus in the current document) are
the following:

• Multi-aspect modelling approach where the security requirements model is
composed of several views in different modeling languages, and each work
phase can use the facet of the model that is most appropriate to represent their
tasks and domain expertise. To cope with the evolving nature of the model,
changes made to any of the view models can be incrementally synchronized
to all other views where appropriate using change-driven transformations.

• Automated pattern-based analysis for certain security properties. This
analysis is resilient to change and the results are continuously and
incrementally kept up-to-date.

• Interactive and formal argumentation analysis to support security experts in
conducting arguments to verify security properties. Taking up the challenge of
evolving models, these argumentation features are complemented by partially
automated strategies to cope with changes to the requirements model.

Position of the deliverable in the project timeline

The main artifacts of WP3 are the SeCMER conceptual model, the SeCMER
methodology for changing requirements, and a CASE tool prototype that supports the
different steps of SeCMER methodology. Considering the SecureChange project
timeline depicted in , the SecMER conceptual model and the SeCMER methodology
have been conceived during the M0-M24 timeframe, while the CASE tool is now under
development during the M12-M36 timeframe. The prototype tool presented in this
deliverable thus belongs to the timeframe M12-M24.

 D.3.4 Proof-of-Concept CASE Tool| version 1.0 | page 5/22

Figure 1. SecureChange Timeline

Integration

This document currently provides an overview of the Year 2 results of WP3 in
developing a prototype tool. At its current stage, the tool is a proof-of-concept
prototype, which integrates results in requirements engineering developed by different
WP3 academic partners using state-of-the-art modeling and transformation techniques.
In Year 3, the prototype will demonstrate the feasibility of integration with (1) industrial
requirements engineering frameworks and (2) prototype tools of other SecureChange
WPs. See Figure 2 for a quick overview of the components involved (provided by
multiple project partners) and the roadmap for establishing links.

For demonstration purposes, this deliverable contains an instantiation of the SecMER
conceptual model and the methodology based on the ATM case study.

 D.3.4 Proof-of-Concept CASE Tool| version 1.0 | page 6/22

Figure 2. A roadmap for component integration

Validation

During year 3 of the project, WP3 will validate both artifacts and also the tool; the
planned method of validation is the tentative application of the tool to the ATM Case
Study for the collection, modeling and analysis of the evolution of security requirements
in a real industrial context and a final an evaluation workshop with ATM experts.

 D.3.4 Proof-of-Concept CASE Tool| version 1.0 | page 7/22

Table of Contents

DOCUMENT INFORMATION 1

DOCUMENT CHANGE RECORD 2

EXECUTIVE SUMMARY 4

POSITION OF THE DELIVERABLE IN THE PROJECT TIMELINE 4

INTEGRATION 5

VALIDATION 6

TABLE OF CONTENTS 7

LIST OF FIGURES 8

1 DEMO DESCRIPTION 9

1.1 Demo Scenario 9

1.2 Overview of demonstrated use cases 9

1.3 Synchronization between models in different requirements formalisms 10

1.4 Detection of a violation of information protection and automatic corrective action
based on evolution rules 14

1.5 Argumentation for the information access property 15

1.6 Revising argumentation after the effects of change 16

2 TOOL REALIZATION 18

2.1 Architectural Overview 18

2.2 Trigger mechanism 19

2.3 Transformation specification 20

REFERENCES 22

 D.3.4 Proof-of-Concept CASE Tool| version 1.0 | page 8/22

List of Figures

Figure 1. SecureChange Timeline.. 5

Figure 2. A roadmap for component integration .. 6

Figure 3. Evolution pre-state in abstract SecMER model and concrete syntax 11

Figure 4. Evolution pre-state on Si* diagram ... 11

Figure 5. Post-state in concrete syntax and abstract SecMER model................... 13

Figure 6. Evolution post-state on Si* diagram ... 14

Figure 7. Detected security issues .. 15

Figure 8. Automatic solutions suggested by evolution rules....................................... 15

Figure 9. A fragment of an argument model... 16

Figure 10. Architectural overview of mode management components.................. 19

 D.3.4 Proof-of-Concept CASE Tool| version 1.0 | page 9/22

1 Demo Description

We are going to illustrate the features supported by WP3 CASE tool prototype using
the Process Level Change Requirement of the Air Traffic Management (ATM) case
study. The ATM case study will be used during the whole demo since it features
requirements-based early security analysis and was used in the previous deliverables
of WP3.

1.1 Demo Scenario
The Process Level Change is about the introduction of the Arrival Manager (AMAN),
which is an aircraft arrival sequencing tool helping to manage and better organize the
air traffic flow in the approach phase. The introduction of the AMAN requires new
operational procedures and functions (as described in Deliverable D1.1) that are
supported by a new information management system for the whole ATM, an IP based
data transport network called System Wide Information Management (SWIM) that will
replace the current point to point communication systems with a ground/ground data
sharing network which connects all the principal actors involved in the Airports
Management and the Area Control Centers.

The entities involved in the simple scenario used for this demo are the AMAN, the
Meteo Data Center (MDC), the SWIM-Box and the SWIM-Network. The SWIM-Box is
the core of the SWIM information management system which provides access via
defined services data that belong to different domain such as flight, surveillance,
meteo, etc.

The introduction of the SWIM requires suitable security properties to be satisfied which
prevent from corruption, accidental or intentional loss of data and guarantee the
integrity and confidentiality of the aircraft sensible data against malicious attacks or
intrusions. In the demo, we will focus on information access (access control) and
information protection (e.g. integrity) properties on the requirements level. In particular,
we will show how to achieve information access by enforcing access control policies on
Meteo Data (MD) transmission and how to ensure integrity of FDD data by using digital
signature or a trusted communication path.

As exploring design alternatives is inherent to the methodology, we will also show how
a cheaper alternative is investigated after the default option of the planned change.
One of the elements in the model will be modified to represent the second alternative,
demonstrating how the analysis is adapted to the new situation. Note that even though
technically the model is modified for a second time, the whole demo revolves around a
single evolution of the system.

1.2 Overview of demonstrated use cases
The audience of the demo will be able to see the following scenario steps, each of
which is supported by the tool: The steps of the demo were chosen such that they

 D.3.4 Proof-of-Concept CASE Tool| version 1.0 | page 10/22

follow a typical requirements evolution workflow, also featuring the contributions of
WP3.

1) Synchronization between models in different requirements formalisms.
We will illustrate e.g how the addition of a new actor “SWIM network” in the SI*
model for the process level change is reflected on the SecMER model.

2) Detection of a violation of information protection (integrity in particular)
and automatic corrective action based on evolution rules. We will show
how the integrity of Meteo Data is violated in the post-state SecMER model
because there is a security goal “Integrity of Meteo Data” protecting the asset
Meteo Data, and the asset is delegated to SWIM actors that are initially trusted
(transitively) with neither the asset nor the goal. This step requires an evolution
rule where the event and condition represent this pattern and where the action
part suggests a corrective action, such as adding to the model the missing trust
relationship, or creating a digital signature action that explicitly fulfills the goal.

3) Argumentation for the information access control property. We will show
how argumentation analysis [5] can be carried out for the access control
property applied to the Flight Data.

4) Revising argumentation after the effects of change. We will show how the
revision of the previously existing argument can be automatically triggered
when a change is inflicted on its ground facts. We also show how the argument
is revised to adapt to the changed situation. This feature is not demonstrated by
a subsequent evolution of the system, but by switching the model to a different
design alternative.

1.3 Synchronization between models in different
requirements formalisms
According to SecMER, a single requirement model can be composed of views in
multiple modeling languages, based on the expertise of requirements engineers and
the domain-specific style of modeling. The challenge lies in preserving consistency
while correctly mapping modifications in a (source) modeling formalism to incremental
changes in another (target) modeling language, especially on-the-fly as the
modifications are being made. The following is a demonstration of incremental
synchronization between views of the requirement model in different formalisms. The
concept is demonstrated by the transformation between Si* and the SecMER
conceptual model in the ATM case study.

 D.3.4 Proof-of-Concept CASE Tool| version 1.0 | page 11/22

Figure 3. Evolution pre-state in abstract SecMER model and concrete syntax

Figure 4. Evolution pre-state on Si* diagram

Initially, the two views in the model are consistent, reflecting the same model (the pre-
state). See Figure 3 for the SecMER model (intentionally simplified for the sake of
demonstration) and Figure 4 for its Si* translation. In this state, the two actors are
AMAN and MDC interfacing over a direct connection. MDC provides the asset Meteo
Data (MD) which is given directly to AMAN. AMAN has a security goal requiring the
integrity of MD, and MDC is trusted to comply with this security requirement. AMAN
also performs an Action, SecurityScreening, to regularly conduct a background check
on its employees to ensure that they do not pose a risk of internal compromise.

Then the change occurs, and following editing actions are performed:

• The new Actor “SWIM” is created in Si*. A corresponding Actor immediately
appears in the SecMER model.

 D.3.4 Proof-of-Concept CASE Tool| version 1.0 | page 12/22

• Likewise, “SWIMBox_MDC” and “SWIMBox_AMAN” are created in the
SecMER model, as communication intermediaries. They are immediately
propagated to the Si* model as well.

• Also in the SecMER model, “Interfaces” relationships are established between
the new Actors and AMAN and MDC. As these connections cannot be
represented in Si*, no synchronization action is performed.

• As the data asset is no longer communicated directly between MDC and
AMAN, the existing direct delegation of MDC can be removed e.g. in Si*. The
corresponding delegation relationship will also disappear from the SecMER
model.

• To represent that the data assets are communicated between the actors over
the new interfaces, delegation relationships are established between the Actors
and dependums in the Si* model. These relationships are then transformed to
their SecMER counterparts.

• As the SWIM network can be accessed by multiple parties, the AMAN has the
new security goal MDAccessControl (“Access Control of MD info”).

See Figure 5 and Figure 6 for the post-state of the model.

 D.3.4 Proof-of-Concept CASE Tool| version 1.0 | page 13/22

 Figure 5. Post-state in concrete syntax and abstract SecMER model

 D.3.4 Proof-of-Concept CASE Tool| version 1.0 | page 14/22

Figure 6. Evolution post-state on Si* diagram

1.4 Detection of a violation of information protection
and automatic corrective action based on evolution rules
Some security properties can be effectively evaluated or approximated based on the
requirements model in a completely automated fashion. It is also possible to suggest
default solutions. SecMER includes the language of Evolution Rules, providing a
declarative guard that can detect undesired situations and the possibility to include
actions.

The following is a demonstration of on-the-fly evaluation of security properties and
offering automated corrections using Evolution Rules.

Actor MDC provides Meteo Data and wants to communicate it to Actor AMAN with the
integrity preserved. Before the evolution, MDC delegated the asset directly to AMAN,
and trusted AMAN with the asset.

• In the post-state, the asset is delegated first to SwimBox_MDC, then to SWIM
network, then to SwimBox_AMAN, and finally to AMAN. Although MDC is
trusted by AMAN with the integrity security goal, the intermediate actors are not,

 D.3.4 Proof-of-Concept CASE Tool| version 1.0 | page 15/22

not even transitively. The tool marks all three intermediate actors as security
violations (see Figure 7).

• Automatic reactions (quick fixes) are also provided for this security pattern.
Candidate solutions (see Figure 8) are automatically offered for each of the
violating actors: (a) to add a trust relationship from MDC to the actor in
question, over the asset as dependum (b) use the goal protecting the asset as
dependum instead, or (c) add an action (i.e. digital signature) that explicitly
fulfils the goal.

• Assuming that it is in fact true that MDC trusts SWIM Network over the security
goal, so this quick fix can be accepted.

• However, MDC does not have trust in the SWIM-Boxes, as it is not directly
concerned with them. Fortunately though, the SWIM Network trusts its Boxes
over the goal, so these trusts relationships can also be added. In the end, the
SWIM-Boxes are also transitively trusted by MDC, so the security property will
cease to be violated.

• Alternatively, an Action such as “MD is digitally signed” can be created to
protect the integrity of MD even when handled by untrusted actors.

Figure 7. Detected security issues

Figure 8. Automatic solutions suggested by evolution rules

1.5 Argumentation for the information access property
The scenario fragment we are going to consider is transmission of MD data to the
AMAN via the new communication network, focusing on how to enforce access control
policies on MD. Arguments will be conducted for the security goal of protecting
MD from malicious attack.

 D.3.4 Proof-of-Concept CASE Tool| version 1.0 | page 16/22

• Based on the requirements model, the facts that can be used for argumentation
are initialized with tool support.

• Argumentation experts build the argument to support the claim that the system
is secure. Counter-arguments (rebuttals) can be voiced, as well as mitigations
for rebuttals, ad infinitum.

• Assuming that an initial argument existed in the pre-state, the effects of
changes can also be represented as Round 2 rebuttals to facts.

The resulting Argumentation model is visualized in Figure 9. The diagram says that the
AMAN system is claimed to be secure before the change (Round #1), and the claim is
warranted by be the facts the system is known to be a close system (F1), and the
physical location of the system is protected (F2). This argument is rebutted in Round
#2, in which another argument claims that the system is no longer secure because
SWIM will not keep AMAN closed. The rebuttal argument is mitigated in Round #3 by
three arguments, which suggest that the AMAN may still be secure given that the
physical infrastructure is secure, personnel are trustworthy and access to data is
controlled.

Figure 9. A fragment of an argument model

1.6 Revising argumentation after the effects of change
While argumentation is a powerful framework for early-stage analysis of security
properties based on the requirements model, by default it considers a single state of
the model. The challenge is in detecting arguments that have potentially been

 D.3.4 Proof-of-Concept CASE Tool| version 1.0 | page 17/22

invalidated by changes, and revisiting these arguments to reflect the evolution, while
no costly revision process is required for unaffected arguments. The following is a
demonstration of the effect of model evolution on arguments.

In the default option of the evolution that is currently reflected by the model, AMAN
carries out the SecurityScreening Action. This action means e.g. a regular background
check whether personnel who have physical or virtual access to SWIM infrastructure
can be suspected to compromise operation or otherwise pose a security threat. This
action was used as a fact in the argument for the information access property. A
second alternative is also proposed to cut costs for SWIM, where the screening is not
performed. After the first alternative has been fleshed out, the second option will also
be investigated.

• Switching to the second design alternative removes this Action from the
SecMER model. As a consequence, the argument that uses this Action as a
fact has now become outdated, and the claim of the argument might have lost
its validity. The argument is automatically marked as invalid, which can be used
as an alert to notify the argumentation experts.

• The change can be represented within the existing argument as a new round
initiated by the rebuttal of the obsolete fact. The argumentation experts can
then convene and argue about whether the claim still holds.

 D.3.4 Proof-of-Concept CASE Tool| version 1.0 | page 18/22

2 Tool Realization

In this Section we give an overview of the design choices behind the actual prototype
tool and the integration of the academic tools.

2.1 Architectural Overview
A prototype tool is realized as a set of Eclipse plug-ins written in Java (partly
generated), and models are represented in the Eclipse Modeling Framework (EMF [1]).
The components of the tool currently fall into these categories:

• Eclipse plug-ins of OpenPF (requirements engineering tool by OU [4]), including
(a) the implementation of the SecMER conceptual model, (b) the argumentation
model and tools, as well as (c) the modeling tools for Problem Frames (only
limited synchronization is supported with the other formalisms as of now)

• Si* (requirements engineering tool [3] by UNITN),

• traceability models to represent the relationship between corresponding model
elements in different languages, e.g. the SecMER conceptual model and Si*,

• run-time platform components of EMF-IncQuery (incremental EMF model query
engine by BME [2]) for change-driven transformations,

• model query plug-ins automatically generated from transformation specification
and Evolution Rules by the development-time tools of EMF-IncQuery and
VIATRA2 (model transformation framework by BME),

• integration code developed solely for this tool, including User Interface
commands and the Java definition of the action parts of Evolution Rules.

The relationship of the most important model management components are depicted
on Figure 10, focusing on the Si* and SecMER models in particular, as well as the
traceability model established between them. User Interface components are omitted
from this diagram. See also Figure 2 for a higher-level overview of what components
and modeling formalisms are involved.

All the involved EMF models are accessed through a common EMF ResourceSet and
edited solely through the corresponding TransactionalEditingDomain (from the EMF
Transaction API). Consequently, all modifications are wrapped into EMF Transactions,
including those carried out by manual editing through the User Interface (e.g. the Si*
diagram editor or the generic EMF tree editor) as well as changes performed by
automated mechanisms such as model transformation. As one of the benefits,
concurrent modifications are serialized and therefore conflict-free. Furthermore, the
commit process of the transactions provides an opportunity for triggering change-
driven actions.

 D.3.4 Proof-of-Concept CASE Tool| version 1.0 | page 19/22

Figure 10. Architectural overview of mode management components

2.2 Trigger mechanism
The incremental query mechanism provided by EMF-IncQuery plays a key role in the
functionality of the tool. Incremental query evaluation code is generated automatically
at development time by EMF-IncQuery, from a graph pattern-based declarative
description of EMF model queries. Through this incremental evaluation functionality,
Evolution Rules can be efficiently triggered by changes captured as graph patterns.
The implementation currently supports detecting the presence, appearance and
disappearance, but not the entire Graph Change Patterns formalism (see D.3.2).

The core triggering plug-in offers an Eclipse extension point for defining change-driven
rules. Multiple constituent plug-ins contribute extensions to active their respective set of
rules. The graph pattern-based declarative event/condition feature of the rules is
evaluated by the incremental graph pattern matcher plug-ins automatically generated
from the declarative description by EMF-IncQuery. At the commit phase of each
transaction, the rules that are found to be triggered will be executed to provide their
reactions to the preceding changes. These reactions are implemented by arbitrary
Java code, and they are allowed to modify the model as well (wrapped in nested
transactions) and could therefore be reacted upon.

Currently, there are three groups of change-driven rules contributed to the extension
point:

• transformation rules that realize the on-the-fly synchronization between multiple
modeling formalisms,

 D.3.4 Proof-of-Concept CASE Tool| version 1.0 | page 20/22

• security-specific evolution rules that detect the appearance of undesired
security patterns, provide alerts on these problems and optionally offer
candidate solutions.

• rules for marking arguments as invalid when changes are inflicted on their
ground facts.

2.3 Transformation specification
The tool maintains a synchronizing transformation between Si* and the SecMER
model. The challenge is to provide bi-directional synchronization with changes
propagated on the fly. Naturally the two languages have different expressive power,
therefore

(a) some concepts are not mapped from one formalism to the other or vice versa,

(b) some model elements may be mapped into multiple (even an unbounded
amount of) corresponding model elements in the other formalism, and finally

(c) it is possible that a single model element has multiple possible translations (due
to the source formalism being more abstract); one of them is created as a
default choice, but the other options are also accepted.

The following mappings define the transformation:

• There is a many-to-one correspondence between Si* Actors of the same name
and SecMER Actors.

• There is a many-to-one correspondence between Si* Resources with the same
name and SecMER Resources that are provided (thus eligible to be
represented in Si*).

• There is a one-to-one correspondence between the original copy of a Si*
Resource, owned by an Actor and not received through delegation, and the
SecMER Provides Relationship from the corresponding Actor to the
corresponding Resource.

• Additional copies of a Si* Resource, owned by an Actor and received by
delegation but not delegated further, are mapped into SecMER Consumes
Relationships from the corresponding Actor to the corresponding Resource.

• There is a many-to-one correspondence between Si* Tasks with the same
name and SecMER Actions that are carried out (thus eligible to be represented
in Si*).

• There is a one-to-one correspondence between a copy of a Si* Task owned by
an Actor and not delegated further, and the SecMER Carries Out Relationship
between the corresponding Actor and Action.

• There is a many-to-one correspondence between Si* Softgoals having the
same name and SecMER Security Goals that are wanted (thus eligible to be
represented in Si*).

• There is a many-to-one correspondence between Si* Goals of the same name,
and SecMER Goals that are wanted (thus eligible to be represented in Si*).and

 D.3.4 Proof-of-Concept CASE Tool| version 1.0 | page 21/22

are not Security Goals. A newly created Si* Goal is mapped by default into a
SecMER Goal of type Goal proper (not any of its subtypes).

• There is a one-to-one correspondence between the orginial copy of a Si* Goal
or Softgoal owned by an Actor and not received by delegation, and the
SecMER Wants Relationship between the corresponding Actor and Goal.

• There is a one-to-one correspondence between Si* ‘AND’ Compositions and
SecMER And Decompositions between Actions or Goals, if both endpoints are
mapped.

• There is a one-to-one correspondence between Si* ‘OR’ Compositions and
SecMER Or Decompositions between Actions or Goals, if both endpoints are
mapped.

• There is a one-to-one correspondence between a Si* MeansEnd Relation from
a Task to a Goal or Softgoal and the SecMER Fulfils Relationship between the
corresponding Action and Goal, if both endpoints are mapped.

• There is a one-to-one correspondence between a Si* Delegation of Permission
Relation, pointing from a Resource owned by an Actor to a second Actor, and
the SecMER Delegates Relationship with the first Actor as source, the second
Actor as target and the Resource as dependum, if all three endpoints are
mapped.

• There is a one-to-one correspondence between a Si* Delegation of Execution
Relation, pointing from a Task or Goal or Softgoal owned by an Actor to a
second Actor, and the SecMER Delegates Relationship with the first Actor as
source, the second Actor as target and the Action or Goal as dependum, if all
three endpoints are mapped.

• There is a one-to-one correspondence between a Si* Trust of Permission
Relation, pointing from a Resource owned by an Actor to a second Actor, and
the SecMER Trusts Relationship with the first Actor as source, the second Actor
as target and the Resource as dependum, if all three endpoints are mapped.

• There is a one-to-one correspondence between a Si* Trust of Execution
Relation, pointing from a Task or Goal or Softgoal owned by an Actor to a
second Actor, and the SecMER Trusts Relationship with the first Actor as
source, the second Actor as target and the Action or Goal as dependum, if all
three endpoints are mapped.

 D.3.4 Proof-of-Concept CASE Tool| version 1.0 | page 22/22

References

[1] The Eclipse Project: Eclipse Modeling Framework. http://eclipse.org/emf

[2] G. Bergmann, Á. Horváth, I. Ráth, D. Varró, A. Balogh, Z. Balogh, and A. Ökrös,
"Incremental Evaluation of Model Queries over EMF Models", Model Driven Engineering
Languages and Systems, 13th International Conference, MODELS'10: Springer, 10/2010.

[3] F. Massacci, J. Mylopoulos, and N. Zannone, Computer-aided Support for Secure Tropos.
Automated Software Engineering, 2007. 14(3): p. 341-364.

[4] T. Tun, Y. Yu, R. Laney, and B. Nuseibeh, “Early Identification of Problem Interactions: A
Tool-Supported Approach,” in Requirements Engineering: Foundation for Software
Quality, vol. 5512, Springer Berlin / Heidelberg, 2009, pp. 74-88.

[5] T. Tun, Y. Yu, C. Haley, B. Nuseibeh, "Model-Based Argument Analysis for Evolving
Security Requirements," Secure System Integration and Reliability Improvement, pp. 88-
97, 2010 Fourth International Conference on Secure Software Integration and Reliability
Improvement, 2010

